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Abstract. A model of an atom in a magnetic solid is used to investigate theoretically features
expected in the cross-section for the magnetic scattering of neutrons by the atom. The atom is
assumed to have two nondegenerate magnetic states, envisaged as two states in a crystal-field
energy level scheme very well separated in energy from all higher states, and the subject of
a Weiss molecular field. It is argued that the thermodynamic quantities which determine the
weights attached to elastic and inelastic scattering events, the magnetic moment and isothermal
susceptibility, respectively, obey a sum rule, and this is exploited to give the temperature
dependence of the weights given, say, the separation in energy of the crystal-field levels and the
critical temperature below which there is a spontaneous magnetic moment. A small value of the
ratio of the energy separation and critical temperature leads to properties significantly different
from those of an ion in a Weiss molecular field and not subjected to a crystal-field potential, for
which the magnetic moment as a function of temperature is obtained from a Brillouin function.
For this special limit of the parameters analytic expressions are provided for the moment and
susceptibility.

1. Introduction

The magnetic properties of some materials are tolerably described, in the first instance, in
terms of the individual constituent magnetic atoms, perturbed by their local environments,
instead of a more complicated scenario that involves all of the unpaired electrons from
all of the atoms. Empirical evidence shows that of many materials which contain atoms
from the rare-earth series in the Periodic Table belong to this class of magnetic materials,
and the finding can be understood on the grounds that the unpaired electrons occupy an
f shell which has a relatively small radius, i.e. f electrons are spatially localized and do
not meander throughout the material. In the localized model of a magnetic material the
environment of an atom is treated as a perturbation on the f-electron states. The components
of the perturbation have a range of strengths, and they are treated accordingly. For rare-
earth materials it is often adequate to neglect all perturbations other than the electrostatic
field created by the ligand ions (crystal-field potential) and the magnetic field produced by
neighbouring magnetic ions [1]. The magnetic field is normally represented by a Weiss
molecular field which is proportional to the atomic magnetic moment.

Two recent reports of the findings from interpretations of experimental investigations
of a Tb compound [2] and Pr compounds [3] conclude that the magnetic properties of the
rare-earth ions, to a large extent, can be described in terms of just two energy states. These
are two states from a plethora of crystal-field states included in the numerical analysis of
the data, and they differ in energy by a very small amount,1, when compared to the energy
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of the next state in the crystal-field energy level scheme. Both teams of investigators used
the neutron scattering experimental technique.

The main purpose of this paper is to derive the neutron scattering cross-section for a two-
state system, and provide a simple and believable interpretation of its main features. To this
end, the temperature dependence of the thermodynamic quantities that determine the weights
of elastic and inelastic scattering events are obtained. The method used is new, different
from the standard mean-field method for calculating thermodynamic quantities, and akin to
the method used to derive the spherical model from the Heisenberg spin Hamiltonian [4].

The model is derived from an isolated, two-state magnetic system, described by the
HamiltonianH0. To this is added a Weiss molecular-field energy,V , meant to represent
the interaction of the systemH0 with its magnetic environment. As normal,V is assumed
to be proportional to the total angular momentum of the atom,J . With our new method
of calculating the thermodynamic properties ofH0 + V the strength of the Weiss molecular
field is not explicit in the cross-section, and the two parameters in the model are1 and the
temperature,Tc, at which the spontaneous magnetic moment,µ0, as a function of increasing
temperature, reaches the value zero. The two states ofH0 + V are separated by an energy,
ε, that varies with the temperature, and its maximum value is achieved at zero temperature.
However, at this temperature and for1 � Tc the weight attached to the inelastic event,
in which the system is excited in energy by an amountε, is very small compared to the
weight attached to the inelastic events at a temperatureT = Tc at whichε = 1.

In the neutron scattering cross-section the weight of the elastic event isµ2
0, and

the weight of inelastic events, apart from the detailed-balance factor, is the isothermal
susceptibility,χ . The quantityµ2

0 + T χ is a constant (T is the temperature in units of
Boltzmann’s constant) equal to the saturation moment. Thus, with increasingT there is
a transfer of weight from elastic to inelastic events. ForT > Tc one hasµ0 = 0 and
the susceptibility obeys the Curie–Weiss law. BelowTc the value ofµ0, and henceχ ,
depends on the energy-separation parameter1. The dependence is very pronounced when
the separation is small compared toTc, and it disappears in the opposite extreme.

The paper is arranged in the following way. Key properties and matrix elements of the
model are gathered in section 2. In the following section, the matrix elements are used to
calculate the explicit form of the cross-section. Its general properties provide definitions of
µ0 andχ which are translated to algebraic expressions by exploiting the known explicit form
of the cross-section. The temperature dependences of these two thermodynamic quantities
are determined in section 4 from the result, mentioned above, that the combinationµ2

0 + T χ

is a constant. The subtle balance of the weights attached to elastic and inelastic events in
scattering, and their variation with temperature, is believable because the analysis is made
without further approximations. Statistical mechanics has to be applied in a consistent
manner. For example, a completeness statement is not to be used; if it is our model is
robbed of its interesting thermodynamics, since completeness implies1 = 0. At the end of
our calculation one has derived realistic results for the thermodynamic quantities, using a
novel method, and taken a fresh look at the cross-section for scattering neutrons from states
of a crystal-field potential. The standard mean-field method for estimating thermodynamic
quantities is briefly reviewed in section 5 to better appreciate the method described in
section 4. Finally, section 6 contains a discussion of our findings, and a generalization of
the model used in the body of the text.
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2. Model

The isolated atom, described byH0, has two nondegenerate eigenstates|j〉 with j = 1, 2,
chosen to be purely real. The operation in which all velocities are reversed (time reversal)
bestows several important properties to the atom and matrix elements required in our
calculation. H0 can have nondegenerate eigenstates if it is time-even and describes an
even number of electrons. For these states diagonal matrix elements of the total angular
momentum operatorJ are zero. This result uses the property ofJ that it is a time-odd
operator, and can be viewed as a generalization of Van Vleck’s theorem for quenching
orbital angular momentum by a crystal-field potential which totally lifts the degeneracy
of the ground state. Off-diagonal matrix elements ofJ are zero or purely imaginary.
This result for off-diagonal matrix elements is valid for time-odd operators and purely real
eigenstates (which exist for nondegenerate states); a proof can be constructed with the same
mathematical apparatus used in a proof of the generalized Van Vleck theorem. Later, we
represent off-diagonal matrix elements ofJ by iζ andζ is purely real or zero.

The wave functions and energies of the two states ofH0 +V can be written in terms of
the corresponding quantities forH0. Here, we just record results with a direct bearing on
the calculation of the cross-section, and from itµ0 andχ . As V is proportional toJ only
its off-diagonal matrix elements are different from zero. The separation of the two energy
levels ofH0 + V is

ε = √
(12 + |2〈1|V |2〉|2) (2.1)

where1 is the corresponding quantity for the system described byH0.
To calculate the neutron cross-section, which is treated in the next section, we need the

matrix elements ofJ calculated with the wave functions ofH0 + V . Let us label the two
states ofH0 + V by the lettersa andb. We find energies

Ea

Eb

}
= 1

2(E1 + E2 ± ε) (2.2)

in which E1 − E2 = 1. For the moment, all matrix elements ofJx andJy are assumed to
be zero; it is argued in section 6 that this assumption does not bear on our main findings,
and it is used now to simplify the algebra in our calculations. The matrix element〈1|Jz|2〉
is assumed to be nonzero and have the value iζ whereζ is purely real. The matrix elements
required to calculate the cross-section are found to be

〈a|Jz|a〉 = −〈b|Jz|b〉 = ζ {1 − (1/ε)2}1/2 and 〈a|Jz|b〉 = −ζ(1/ε). (2.3)

The matrix element of the angular momentum operator between the two states of
H0, 〈1|Jz|2〉 = iζ , can be expressed in terms of other parameters in the model, as we
will demonstrate. Our model does not invoke a completeness statement that, among other
things, implies

〈a|J 2
z |a〉 = 〈b|J 2

z |b〉 = ζ 2 (2.4)

and1 = 0.
It remains to specifyV . A Weiss molecular-field description of the magnetic envir-

onment is provided by the choice

V = λ · J (2.5)

whereλ is a coupling parameter.



5918 S W Lovesey

3. The neutron scattering cross-section

The magnetic neutron cross-section is derived from the so-called dipole approximation to
the magnetic scattering amplitude [5]. In this approximation the cross-section, in units of
0.29 barns, is

d2σ

d� dE′ =
(

k′

k

)
{ 1

2gF(K)}2 sin2 θ
∑
µ,µ′

pµ〈µ|Jz|µ′〉〈µ′|Jz|µ〉δ(ω + Eµ − Eµ′). (3.1)

Here,K = (k − k′) is at an angleθ to the axis of quantization, which we have labelled
the z-axis. The vectorK is the change in the wave vector of the neutron created by the
scattering event, andω is the concomitant change in the energy (¯h = 1) of the neutron.
The delta function in (3.1) expresses the conservation of energy for a scattering event. The
labelsµ, µ′ refer to the states ofH0 + V , g is the Land́e factor, andF(K) is the atomic
form factor. The quantitypµ is the Boltzmann population factor for the state labelledµ,
and

∑
pµ = 1.

For a two-state atom (3.1) reduces to

d2σ

d� dE′ =
(

k′

k

)
{ 1

2F(K) sinθ}2{µ2
0δ(ω) + 1

2ωχ{1 + n(ω)}[δ(ω + ε) + δ(ω − ε)]}. (3.2)

From general considerations about information in the cross-section the weights of the elastic
and inelastic contributions to the cross-section are known to be thermodynamic properties
of the atom; explicit results for the two-state atom are given below. First, the weight of the
purely elastic line is proportional toµ2

0 whereµ0 is the magnetic moment of the atom. This
has a saturation value, denoted byµ, at zero temperature, and decreases with increasing
temperature until it vanishes at the critical temperature. The inelastic processes, which
contribute when the energy of the neutron changes in the scattering event by±ε, contain
the standard detailed-balance factor

ω[1 + n(ω)] = ω/{1 − exp(−ω/T )} (3.3)

whereT is the temperature (in units of Boltzmann’s constant). The thermodynamic quantity,
χ , is the magnetic susceptibility.

The thermodynamic quantities are dervied by using the results of the previous section
and we find the expressions

µ0 = gζ {1 − (1/ε)2}1/2 (3.4)

and

χ = g2(2/ε)(1ζ/ε)2 tanh(ε/2T ). (3.5)

A few more comments aboutµ0 andχ are appropriate at this juncture. The magnetic
moment vanishes at the temperature,Tc, at which the energy separationε = 1. The
temperature dependence ofµ0 is one of the subjects of the next section. It can be shown,
using (3.4) and (5.1), for example, that

g〈Jz〉 = −µ0 tanh(ε/2T ). (3.6)

This admits the interpretation thatµ0 is the local magnetic moment of an isolated ion, and
g〈Jz〉 is the bulk magnetic moment. The difference between the two moments is created
by thermal fluctuations, which vanish at zero temperature. Regarding the susceptibility, its
presence in the cross-section is required by the general theory of scattering, or equivalently
linear response theory [5]; one knows from the theory that the frequency sum rule in 1/ω

applied to the inelastic events in the cross-section gives the isothermal susceptibility (apart
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from a factor 2). Finally, let us note that the structure of the cross-section (3.2) is quite
independent of the method used to estimate the thermodynamic quantities, which is taken
up in the next sections. Of course, the structure of (3.2) does reflect the properties assumed
of our model, and notably the existence of two magnetic states and the absence of processes
involving the transverse components of the angular momentum; cf. section 6.

4. Thermodynamic properties

We will proceed to the determination of the thermodynamic properties of the system by
calculating the thermal average value ofJ · J , using a method which has many features in
common with the spherical model description of static spin correlations, including a partial
account of quantum effects present at low temperatures [1, 4]. If all states of the magnetic
atom are taken into account, i.e. completeness is imposed, one can equateJ ·J andJ (J +1),
so 〈J · J〉 is a constant independent of the temperature. We propose that the same result
holds in our model, which is physically plausible, of course, and a corollary of the choice
1 6= 0.

Only one term in〈J · J〉 is nonzero because the assumption〈1|Jα|2〉 = 0 for α = x

or y means〈J 2
α 〉 = 0; cf. (5.1). Average values of products ofJα are obtained from the

partition function

2 exp{−(E1 + E2)/2T } cosh(ε/2T )

by differentiating it the requisite number of times with respect toλα which appears inε [1].
From the second derivative of the partition function we find the estimate

g2〈J 2
z 〉 = µ2

0 + T χ (4.1)

whereµ0 andχ are defined in (3.4) and (3.5). From (3.5) evaluated atT = 0,

χ = 2(gζ1)2/ε3 T = 0. (4.2)

Since the susceptibility atT = 0 is bounded the result (4.1) evaluated at this temperature
tells us the constant on the left-hand side is the saturation moment,µ, and for an arbitrary
temperature we take

µ2 = µ2
0 + T χ. (4.3)

This result can be interpreted as a sum rule on weights attached to elastic and inelastic
events in the cross-section (3.2), or an equation of state for the thermodynamic quantities
µ0 andχ . In the context of scattering by the atom, the content of (4.3) is expressed by the
observation that total scattering, over all possible events, is a constant independent of the
temperature.

It is of interest to compare (4.2) with the value of the susceptibility atTc. To this end
it is useful to introduce some reduced variables. Letx = 1/2Tc andy = (µ/gζ )2, which
are related by

y = (tanhx)/x 6 1. (4.4)

This relation follows from (4.3) evaluated forT = Tc. Writing χ = χ(T ), the ratio of the
susceptibilitiesT = 0 andT = Tc is

{χ(0)/χ(Tc)} = (1 − y)3/2/(xy). (4.5)

In the limit x � 1

{χ(0)/χ(Tc)} → 0.192x2
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Table 1. Various quantities are shown as functions of the reduced temperature (T/Tc). Results
are for x = 0.30 for which y = 0.97. The results in brackets, alongside the results for
the reduced magnetic moment, are the reduced magnetic moments obtained from a Brillouin
function, equation (4.7).

T/Tc µ0/µ χ(T )/χ(Tc) 1/ε

0.0 1.0 (1.0) 0.017 0.17
0.4 0.995 (0.986) 0.026 0.20
0.6 0.988 (0.907) 0.040 0.23
0.8 0.968 (0.711) 0.079 0.30
0.9 0.931 (0.525) 0.148 0.40
0.95 0.867 (0.379) 0.261 0.52
0.99 0.606 (0.173) 0.639 0.80

and this means, for the case in hand, that the weight of the inelastic contribution to the
cross-section is relatively weak at a temperature small compared toTc. For T = 0 and
x → 0 one finds that the energy separation is independent of1 and it achieves the value
ε = 2Tc

√
3.

To calculate thermodynamic quantities in the range of temperatures up toTc it proves
useful to introduce a third reduced variable,z = ε/2Tc. The sum rule (4.3) expressed in
terms of the reduced variables is

y = 1 + (x/z)2{(τ/z) tanh(z/τ) − 1} (4.6)

whereτ = (T /Tc). The magnetic moment is obtained from (3.4) using the values ofy and
1/ε = x/z, and the corresponding value of the susceptibility follows immediately from
(4.3). By way of an illustration, table 1 contains values ofµ0/µ, χ(T )/χ(Tc) and1/ε as
a function ofT/Tc for the particular casex = 1/2Tc = 0.30.

Looking at the values in table 1 ofµ0 it is evident that they are significantly different
from those obtained from a standard mean-field method. To quantify this observation we
include in the table values ofm that satisfy the mean-field equation (Brillouin function)

m = tanh(m/τ). (4.7)

The momentµ0 vanishes asT approachesTc with a power-law dependence, namely

µ0 ∝ (1 − τ)1/2 τ → 1

and m possesses the same temperature dependence. The difference betweenµ0 and m is
in the amplitude factors, and forµ0 we find that this strongly depends on the value of
x = 1/2Tc, for small values ofx. In the latter case

µ2
0 ∝ {1 − (1/ε)2}/y = (5/x2)(1 − τ). (4.8)

Hence, a small value ofx enhances the magnitude ofµ0, for a given value ofτ . In the
opposite extreme,x → ∞, we find thatµ0 is independent ofx. The corresponding values
of χ are obtained from (4.3). A small value ofx reducesχ , and enhancesµ0, and we find
for x � 1 andτ close to unity

χ(T ) = χ(Tc){1 − 5(1 − τ)/x2}. (4.9)

For large values ofx the susceptibility is independent ofx, at the same level of
approximation in 1− τ .
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5. The mean-field method

It is to be noted that in the previous treatment of the thermodynamic properties of our
model no use is made of〈Jz〉. Instead, thermodynamic properties are obtained from an
equation which is derived from〈J ·J〉. In this respect, the treatment of the thermodynamic
properties is similar to the spherical model approximation for the static correlation functions
of a Heisenberg magnet, while basing the thermodynamic properties on an equation for〈Jz〉
using λ ∝ 〈Jz〉 is the standard mean-field method [6]. Of course, the essential difference
between the two methods is the assumption in the mean-field method thatλ is proportional
to 〈Jz〉, whereas in our methodλ is not explicit in the values that we derive for the magnetic
moment and the susceptibility. The use ofλ ∝ 〈Jz〉 is physically motivated, scilicet the
Weiss molecular field. For completeness, and to facilitate a comparison of the two methods,
we briefly describe the standard mean-field method applied to our model system.

One easily finds

〈Jα〉 = −1

2

(
dε

dλα

)
tanh(ε/2T ). (5.1)

For our model, the right-hand side vanishes for all Cartesian components exceptα = z, and
〈1|V |2〉 = λz〈1|Jz|2〉. The standard mean-field method is obtained by takingλz to have the
form

λz = −λ0〈Jz〉. (5.2)

Using this relation in (5.1) yields an equation for the temperature dependence of the gap
energy, namely

ε = 2λ0ζ
2 tanh(ε/2T ). (5.3)

This equation requiresε to vanish at a temperature which is larger thanTc. For T = Tc

one hasε = 1, and using these values in (3.5) and (5.3) we find [6]

g2 = λ0χ(Tc) (5.4)

which determines the coupling parameter atTc in terms ofχ(Tc).
Other features of the mean-field method applied to our model are conveniently expressed

in terms of the temperature,T∗, at whichε in (5.3) is zero. One finds

T∗ = λ0ζ
2 (5.5)

ε0 = (ε/2T∗) = tanh(ε0T∗/T ) (5.6)

and (3.6) becomes

µ0 = −g〈Jz〉/ε0. (5.7)

Note that (5.5) implies thatλ0 is a constant which is independent of the temperature. At
absolute zeroε0 = 1. The temperature dependence ofµ0 obtained by the mean-field method
is similar to that obtained by our method. In particular, equation (5.7) approaches zero at
the critical temperature with the power-law dependence displayed in (4.8), and the only
difference is the factor 5 in (4.9) is replaced by the factor 3.

To complete the physical picture on which the mean-field method rests we relateλ0 to
the strength of the exchange parameters in a Heisenberg interaction between spin operators,
{Sj }, located at sites labelled by the indexj . Denoting the exchange parameter for two
sitesi andj by I (i, j), which has the propertyI (j, j) = 0, the Heisenberg interaction is

−
∑
i,j

I (i, j)Si · Sj = −(g − 1)2
∑
i,j

I (i, j)Ji · Jj (5.8)
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and the mean-field energy parameter is [6]

λ0 = 2(g − 1)2
∑

j

I (i, j). (5.9)

The results (5.4) and (5.9) relate the susceptibility, measured atTc, to the strength of the
exchange parameters.

6. Discussion

We have calculated the neutron cross-section for a magnetic ion that has two nondegenerate
energy levels separated by a small energy1. The environment of the ion exerts a Weiss
molecular field and the potential is taken to be proportional to the total angular momentum,
J . The cross-section for this simple model can be calculated without approximation. The
second aspect of our study is the calculation of the thermodynamic quantities in the cross-
section, which are the weights attached to the elastic and inelastic scattering events. We
have demonstrated that a sum rule for the weights, which is an exact statement, permits the
calculation of the thermodynamic quantities in terms of1 and the critical temperature, say.
Moreover, the weights admit a physical interpretation; the weight attached to the elastic
event is the square of the magnetic moment, and the corresponding quantity for inelastic
events is the isothermal susceptibility.

The model can be viewed as an abstraction from a full crystal-field model, and it will
be of value when1 is small compared to the energy of the second excited state in the
crystal-field energy level scheme. A case in point is the rare-earth magnet studied by
Staubet al [2]. They estimate that the ratio of the energy of the second level to1 is
approximately 5× 103, andx = 1/2Tc ∼ 0.007 whereTc is the temperature below which
there is a spontaneous magnetic moment. For this set of parameters, we predict a separation
in energy of the two states at zero temperatureε = 1.64 meV, which then decreases with
increasing temperature, by a factor of 0.004, to its valueε = 1 at Tc. The small weight
attached to the transition at zero temperature, which we find to be proportional tox2, and
an instrument resolution larger than1 contrive in the execution of the neutron scattering
experiment to render the transition unobservable. One of the compounds studied by Blaise
et al [3] might also be realistically described by our model. For PrFe2Ge2 the ratio of the
energy of the second level in the crystal-field scheme to1 is ∼14, andx = 0.37. The
interpretation of the scattering experiment provided by the authors is in accord on several
fronts with our findings. For example, the weight attached to the transition with energyε

shows a substantial decrease in moving from the paramagnetic state down toT = 0.2Tc,
and there is a concomitant increase inε by a factor of three.

Regarding the magnetic moment one has the exact identity (3.6) that relates the bulk
and local moments, from which one deduces−g〈Jz〉/µ0 6 1 and the equality is achieved
at zero temperature. Physically the difference between the two moments can be ascribed to
thermal fluctuations (absent in the classical limit). A very similar phenomenon is observed
in the study of an isolated quantum harmonic oscillator, of interest in the interpretation of
Mössbauer spectra, which has thermodynamic properties, e.g. a Debye–Waller factor, that
are different from those obtained for an assembly of oscillators. A physical interpretation
of the ratio−g〈Jz〉/µ0 can be made in terms of the average energy ofH0 + V . The latter,
measured with respect to the midpoint of the two levels inH0 which are separated by an
energy1, is found to be

−(ε/2) tanh(ε/2T ).
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Referring back to the identity (3.6) one can therefore interpret the ratio of the magnetic
moments as proportional to the variance in the average energy of the two states inH0 + V .

Finally, let us consider what happens to our findings when we generalize the model
by lifting the restriction that the transverse components ofJ are quenched. Let the matrix
elements〈1|Jα|2〉 = iζα, with α = x, y or z, be different from zero. The sum rule (4.3) is
changed only in so much asζ 2

z in µ2
0 andχ is replaced by∑

α

ζ 2
α .

Hence, in the discussion of thermodynamic properties that stem from the sum rule the
variabley is

y = (µ/g)2
/ ∑

α

ζ 2
α .

Since this is the only change necessitated by the generalization of our model one concludes
that the generalization does not change the thermodynamic properties. Next, we consider
the change to the neutron scattering cross-section. In (3.1)

sin2 θ〈µ|Jz|µ′〉〈µ′|Jz|µ〉
is replaced by∑

α,β

(δα,β − K̂αK̂β)〈µ|Jα|µ′〉〈µ′|Jβ |µ〉

in which K̂α is theα-component of the unit vector̂K = K/|K|. On carrying through the
calculation of the cross-section, the change with respect to (3.2) is that sin2 θ |〈1|Jz|2〉|2 is
replaced by ∑

α,β

(δα,β − K̂αK̂β)〈1|Jα|2〉∗〈1|Jβ |2〉.

Now, the materials investigated are often in the form of powders, and not single crystals. In
this case, it is appropriate to average the cross-section over the orientations ofK relative to
the crystal axes. If the atomic form factor is independent of the direction ofK, to a good
approximation, the orientational average amounts to no more than averaging the foregoing
combination of matrix elements, and the answer is

2

3

∑
α

ζ 2
α = 2

3
(µ/g)2/y.

We conclude that the thermodynamic properties of the cross-section are completely
determined by the sum rule, which is the case with the simpler model that we have used as
a vehicle for our discussion in the preceding sections.
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